Que es cursor adapter
Como se aplica y beneficios que tiene
El CursorAdapter no es más que una nueva clase, pero muy importante, ya que con ella se puede gestionar todo acceso a datos, tanto local como remoto, el cursorAdapter soporta diferentes orígenes de datos, los cuales pueden ser aplicados dinámicamente y la compartición de dichos orígenes de datos solamente se encontrará limitada por la propia tecnología. El cursorAdapter soporta los siguientes orígenes de datos: Nativo (Visual FoxPro) Open Data Connectivity (ODBC) ActiveX Data Object (ADO) Extensible Markup Lenguaje (XML) Debemos entender, a esta nueva clase como un punto de entrada, ya que como todo tiene sus deficiencias, pero por ello, no deja de ser noble en su propio concepto y mantener su grandeza para el desarrollo. Si sabemos darle este enfoque, se puede obtener unos resultados majestuosos en la capa de acceso a datos, ya sea para aplicaciones cliente/servidor, posibilidades de movernos en multitud de bases de datos, etc. Y todo esto interrelacionado; con que a partir de esta versión podemos crear clases partiendo del contenedor DataEnvironment, se pueden crear verdaderos sistemas, con versatilidad, robustez y potencia en lo que a la capa de acceso a datos se refiere. Otra de las grandes ventajas que ofrece el CursorAdapter es que mantiene la interacción con los comandos TableUpdate y TableRevert, esto es realmente muy bueno, ya que no perdemos la generosidad y dimensión de dichos comandos, sobre todo cuando queremos dar robustez a la integridad de nuestros datos e independientemente del origen de datos.
El lenguaje de consulta estructurado (SQL): es un lenguaje de base de datos normalizado, utilizado por los diferentes motores de bases de datos para realizar determinadas operaciones sobre los datos o sobre la estructura de los mismos. Pero como sucede con cualquier sistema de normalización hay excepciones para casi todo; de hecho, cada motor de bases de datos tiene sus peculiaridades y lo hace diferente de otro motor, por lo tanto, el lenguaje SQL normalizado (ANSI) no nos servirá para resolver todos los problemas, aunque si se puede asegurar que cualquier sentencia escrita en ANSI será interpretable por cualquier motor de datos.
Breve Historia
La historia de SQL: (que se pronuncia deletreando en inglés las letras que lo componen, es decir "ese-cu-ele" y no "siquel" como se oye a menudo) empieza en 1974 con la definición, por parte de Donald Chamberlin y de otras personas que trabajaban en los laboratorios de investigación de IBM, de un lenguaje para la especificación de las características de las bases de datos que adoptaban el modelo relacional. Este lenguaje se llamaba SEQUEL (Structured English Query Language) y se implementó en un prototipo llamado SEQUEL-XRM entre 1974 y 1975. Las experimentaciones con ese prototipo condujeron, entre 1976 y 1977, a una revisión del lenguaje (SEQUEL/2), que a partir de ese momento cambió de nombre por motivos legales, convirtiéndose en SQL. El prototipo (System R), basado en este lenguaje, se adoptó y utilizó internamente en IBM y lo adoptaron algunos de sus clientes elegidos. Gracias al éxito de este sistema, que no estaba todavía comercializado, también otras compañías empezaron a desarrollar sus productos relacionales basados en SQL. A partir de 1981, IBM comenzó a entregar sus productos relacionales y en 1983 empezó a vender DB2. En el curso de los años ochenta, numerosas compañías (por ejemplo Oracle y Sybase, sólo por citar algunos) comercializaron productos basados en SQL, que se convierte en el estándar industrial de hecho por lo que respecta a las bases de datos relacionales.
En 1986, el ANSI adoptó SQL (sustancialmente adoptó el dialecto SQL de IBM) como estándar para los lenguajes relacionales y en 1987 se transfomó en estándar ISO. Esta versión del estándar va con el nombre de SQL/86. En los años siguientes, éste ha sufrido diversas revisiones que han conducido primero a la versión SQL/89 y, posteriormente, a la actual SQL/92.
El hecho de tener un estándar definido por un lenguaje para bases de datos relacionales abre potencialmente el camino a la intercomunicabilidad entre todos los productos que se basan en él. Desde el punto de vista práctico, por desgracia las cosas fueron de otro modo. Efectivamente, en general cada productor adopta e implementa en la propia base de datos sólo el corazón del lenguaje SQL (el así llamado Entry level o al máximo el Intermediate level), extendiéndolo de manera individual según la propia visión que cada cual tenga del mundo de las bases de datos.
Actualmente, está en marcha un proceso de revisión del lenguaje por parte de los comités ANSI e ISO, que debería terminar en la definición de lo que en este momento se conoce como SQL3. Las características principales de esta nueva encarnación de SQL deberían ser su transformación en un lenguaje stand-alone (mientras ahora se usa como lenguaje hospedado en otros lenguajes) y la introducción de nuevos tipos de datos más complejos que permitan, por ejemplo, el tratamiento de datos multimediales.
Componentes del SQL
El lenguaje SQL está compuesto por comandos, cláusulas, operadores y funciones de agregado. Estos elementos se combinan en las instrucciones para crear, actualizar y manipular las bases de datos.
Comandos
Existen dos tipos de comandos SQL:
o DLL que permiten crear y definir nuevas bases de datos, campos e índices.
o DML que permiten generar consultas para ordenar, filtrar y extraer datos de la base de datos.
Comandos DLL
Comando
Descripción
CREATE
Utilizado para crear nuevas tablas, campos e índices
DROP
Empleado para eliminar tablas e índices
ALTER
Utilizado para modificar las tablas agregando campos o cambiando la definición de los campos.
Comandos DML
Comando
Descripción
SELECT
Utilizado para consultar registros de la base de datos que satisfagan un criterio determinado
INSERT
Utilizado para cargar lotes de datos en la base de datos en una única operación.
UPDATE
Utilizado para modificar los valores de los campos y registros especificados
DELETE
Utilizado para eliminar registros de una tabla de una base de datos
Cláusulas
Las cláusulas son condiciones de modificación utilizadas para definir los datos que desea seleccionar o manipular.
Cláusula
Descripción
FROM
Utilizada para especificar la tabla de la cual se van a seleccionar los registros
WHERE
Utilizada para especificar las condiciones que deben reunir los registros que se van a seleccionar
GROUP BY
Utilizada para separar los registros seleccionados en grupos específicos
HAVING
Utilizada para expresar la condición que debe satisfacer cada grupo
ORDER BY
Utilizada para ordenar los registros seleccionados de acuerdo con un orden específico
Operadores Lógicos
Operador
Uso
AND
Es el "y" lógico. Evalúa dos condiciones y devuelve un valor de verdad sólo si ambas son ciertas.
OR
Es el "o" lógico. Evalúa dos condiciones y devuelve un valor de verdad si alguna de las dos es cierta.
NOT
Negación lógica. Devuelve el valor contrario de la expresión.
Operadores de Comparación
Operador
Uso
<
Menor que
>
Mayor que
<>
Distinto de
<=
Menor o igual que
>=
Mayor o igual que
=
Igual que
BETWEEN
Utilizado para especificar un intervalo de valores.
LIKE
Utilizado en la comparación de un modelo
In
Utilizado para especificar registros de una base de datos
Funciones de Agregado
Las funciones de agregado se usan dentro de una cláusula SELECT en grupos de registros para devolver un único valor que se aplica a un grupo de registros.
Funciónn
Descripción
AVG
Utilizada para calcular el promedio de los valores de un campo determinado
COUNT
Utilizada para devolver el número de registros de la selección
SUM
Utilizada para devolver la suma de todos los valores de un campo determinado
MAX
Utilizada para devolver el valor más alto de un campo especificado
MIN
Utilizada para devolver el valor más bajo de un campo especificado
Orden de ejecución de los comandos
Dada una sentencia SQL de selección que incluye todas las posibles cláusulas, el orden de ejecución de las mismas es el siguiente:
1. Cláusula FROM
2. Cláusula WHERE
3. Cláusula GROUP BY
4. Cláusula HAVING
5. Cláusula SELECT
6. Cláusula ORDER BY
miércoles, 24 de febrero de 2010
domingo, 21 de febrero de 2010
bases de datos en foxpro
Definición de Base de datos(database). Almacén de datos relacionados con diferentes modos de organización. Una base de datos representa algunos aspectos del mundo real, aquellos que le interesan al diseñador. Se diseña y almacena datos con un propósito específico. Con la palabra "datos" se hace referencia a hechos conocidos que pueden registrarse, como ser números telefónicos, direcciones, nombres, etc.Las bases de datos almacenan datos, permitiendo manipularlos fácilmente y mostrarlos de diversas formas.El proceso de construir una base de datos es llamado diseño de base de datos.
Gestión de bases de datosUna base de datos puede mantenerse manualmente o ser informatizada (esta última es la que nos interesa). La base de datos informatizada es creada y mantenida por un conjunto de aplicaciones diseñadas para esas tareas específicamente o bien, se puede gestionar empleando un SGBD.Los SGBD son un conjunto de programas encargados de definir, construir y manipular una base de datos, y mantener su integridad y redundancias.* Definir una base de datos: consiste en especificar los tipos de datos, estructuras y restricciones para los datos que se almacenarán.* Construir una base de datos: es el proceso de almacenar los datos sobre algún medio de almacenamiento.* Manipular una base de datos: incluye funciones como consulta, actualización, etc. de bases de datos.Manipulación de bases de datosEl lenguaje de consulta más habitual para las bases de datos online es el SQL. Ver consulta en base de datos. Algunas bases de datos populares son MS Access, dBase, FoxPro, Paradox, Approach, Oracle y Open Office Base.Las bases de datos contienen tablas, cada tabla tiene registros que su vez contienen campos.Aplicaciones tradicionales de base de datosEn la actualidad estamos empleando bases de datos continuamente, muchas veces sin notarlo. Por ejemplo, al retirar o ingresar dinero en un cajero automático, reservar un vuelo aéreo, al suscribirse a algún servicio, o si consultamos un catálogo de libros de una biblioteca, o al buscar en un buscador de internet, etc. En todos estos casos, se están empleando bases de datos informatizadas.Actores sobre bases de datosLos actores o personas relacionadas a las bases de datos son:* Administrador de bases de datos (ABD).* Diseñador de bases de datos.* Usuario final: es aquella persona cuyo trabajo requiere acceder a la base de datos ya sea para consultarla, actualizarla y/o generar informes.* Analista de sistemas y programador de aplicaciones.Almacenamiento de las bases de datos(ver almacenamiento de bases de datos)Las bases de datos son conceptuales, describen diferentes entidades con sus atributos y relaciones. Pero básicamente las bases de datos terminan almacenándose en forma de archivos, generalmente en discos magnéticos.
Gestión de bases de datosUna base de datos puede mantenerse manualmente o ser informatizada (esta última es la que nos interesa). La base de datos informatizada es creada y mantenida por un conjunto de aplicaciones diseñadas para esas tareas específicamente o bien, se puede gestionar empleando un SGBD.Los SGBD son un conjunto de programas encargados de definir, construir y manipular una base de datos, y mantener su integridad y redundancias.* Definir una base de datos: consiste en especificar los tipos de datos, estructuras y restricciones para los datos que se almacenarán.* Construir una base de datos: es el proceso de almacenar los datos sobre algún medio de almacenamiento.* Manipular una base de datos: incluye funciones como consulta, actualización, etc. de bases de datos.Manipulación de bases de datosEl lenguaje de consulta más habitual para las bases de datos online es el SQL. Ver consulta en base de datos. Algunas bases de datos populares son MS Access, dBase, FoxPro, Paradox, Approach, Oracle y Open Office Base.Las bases de datos contienen tablas, cada tabla tiene registros que su vez contienen campos.Aplicaciones tradicionales de base de datosEn la actualidad estamos empleando bases de datos continuamente, muchas veces sin notarlo. Por ejemplo, al retirar o ingresar dinero en un cajero automático, reservar un vuelo aéreo, al suscribirse a algún servicio, o si consultamos un catálogo de libros de una biblioteca, o al buscar en un buscador de internet, etc. En todos estos casos, se están empleando bases de datos informatizadas.Actores sobre bases de datosLos actores o personas relacionadas a las bases de datos son:* Administrador de bases de datos (ABD).* Diseñador de bases de datos.* Usuario final: es aquella persona cuyo trabajo requiere acceder a la base de datos ya sea para consultarla, actualizarla y/o generar informes.* Analista de sistemas y programador de aplicaciones.Almacenamiento de las bases de datos(ver almacenamiento de bases de datos)Las bases de datos son conceptuales, describen diferentes entidades con sus atributos y relaciones. Pero básicamente las bases de datos terminan almacenándose en forma de archivos, generalmente en discos magnéticos.
jueves, 11 de febrero de 2010
taller de investigacion sobre (p.o.o)
La programación Orientada a objetos (POO):
es una forma especial de programar, más cercana a como expresaríamos las cosas en la vida real que otros tipos de programación. Con la POO tenemos que aprender a pensar las cosas de una manera distinta, para escribir nuestros programas en términos de objetos, propiedades, métodos y otras cosas que veremos rápidamente para aclarar conceptos y dar una pequeña base que permita soltarnos un poco con este tipo de programación.
Motivación
Durante años, los programadores se han dedicado a construir aplicaciones muy parecidas que resolvían una y otra vez los mismos problemas. Para conseguir que los esfuerzos de los programadores puedan ser utilizados por otras personas se creó la POO. Que es una serie de normas de realizar las cosas de manera que otras personas puedan utilizarlas y adelantar su trabajo, de manera que consigamos que el código se pueda reutilizar.
La POO no es difícil, pero es una manera especial de pensar, a veces subjetiva de quien la programa, de manera que la forma de hacer las cosas puede ser diferente según el programador. Aunque podamos hacer los programas de formas distintas, no todas ellas son correctas, lo difícil no es programar orientado a objetos sino programar bien. Programar bien es importante porque así nos podemos aprovechar de todas las ventajas de la POO.
Cómo se piensa en objetos
Pensar en términos de objetos es muy parecido a cómo lo haríamos en la vida real. Por ejemplo vamos a pensar en un coche para tratar de modelizarlo en un esquema de POO. Diríamos que el coche es el elemento principal que tiene una serie de características, como podrían ser el color, el modelo o la marca. Además tiene una serie de funcionalidades asociadas, como pueden ser ponerse en marcha, parar o aparcar.
Pues en un esquema POO el coche sería el objeto, las propiedades serían las características como el color o el modelo y los métodos serían las funcionalidades asociadas como ponerse en marcha o parar.
Por poner otro ejemplo vamos a ver cómo modelizaríamos en un esquema POO una fracción, es decir, esa estructura matemática que tiene un numerador y un denominador que divide al numerador, por ejemplo 3/2.
La fracción será el objeto y tendrá dos propiedades, el numerador y el denominador. Luego podría tener varios métodos como simplificarse, sumarse con otra fracción o número, restarse con otra fracción, etc.
Estos objetos se podrán utilizar en los programas, por ejemplo en un programa de matemáticas harás uso de objetos fracción y en un programa que gestione un taller de coches utilizarás objetos coche. Los programas Orientados a objetos utilizan muchos objetos para realizar las acciones que se desean realizar y ellos mismos también son objetos. Es decir, el taller de coches será un objeto que utilizará objetos coche, herramienta, mecánico, recambios, etc.
Clases en POO
Las clases :son declaraciones de objetos, también se podrían definir como abstracciones de objetos. Esto quiere decir que la definición de un objeto es la clase. Cuando programamos un objeto y definimos sus características y funcionalidades en realidad lo que estamos haciendo es programar una clase. En los ejemplos anteriores en realidad hablábamos de las clases coche o fracción porque sólo estuvimos definiendo, aunque por encima, sus formas.
Propiedades en clases
Las propiedades o atributos: son las características de los objetos. Cuando definimos una propiedad normalmente especificamos su nombre y su tipo. Nos podemos hacer a la idea de que las propiedades son algo así como variables donde almacenamos datos relacionados con los objetos.
Métodos en las clases :
Son las funcionalidades asociadas a los objetos. Cuando estamos programando las clases las llamamos métodos. Los métodos son como funciones que están asociadas a un objeto.
Objetos en POO
Los objetos son ejemplares de una clase cualquiera. Cuando creamos un ejemplar tenemos que especificar la clase a partir de la cual se creará. Esta acción de crear un objeto a partir de una clase se llama instanciar (que viene de una mala traducción de la palabra instace que en inglés significa ejemplar). Por ejemplo, un objeto de la clase fracción es por ejemplo 3/5. El concepto o definición de fracción sería la clase, pero cuando ya estamos hablando de una fracción en concreto 4/7, 8/1000 o cualquier otra, la llamamos objeto.
Para crear un objeto se tiene que escribir una instrucción especial que puede ser distinta dependiendo el lenguaje de programación que se emplee, pero será algo parecido a esto.
miCoche = new Coche() programacion orientada a objetos (p.o.o)Con la palabra new especificamos que se tiene que crear una instancia de la clase que sigue a continuación. Dentro de los paréntesis podríamos colocar parámetros con los que inicializar el objeto de la clase coche.
Estados en objetos
Cuando tenemos un objeto sus propiedades toman valores. Por ejemplo, cuando tenemos un coche la propiedad color tomará un valor en concreto, como por ejemplo rojo o gris metalizado. El valor concreto de una propiedad de un objeto se llama estado.
Para acceder a un estado de un objeto para ver su valor o cambiarlo se utiliza el operador punto.
miCoche.color = rojo
El objeto es miCoche, luego colocamos el operador punto y por último el nombre e la propiedad a la que deseamos acceder. En este ejemplo estamos cambiando el valor del estado de la propiedad del objeto a rojo con una simple asignación.
Mensajes en objetos
Un mensaje en un objeto es la acción de efectuar una llamada a un método. Por ejemplo, cuando le decimos a un objeto coche que se ponga en marcha estamos pasándole el mensaje “ponte en marcha”.
Para mandar mensajes a los objetos utilizamos el operador punto, seguido del método que deseamos invocar.
miCoche.ponerseEnMarcha()
En este ejemplo pasamos el mensaje ponerseEnMarcha(). Hay que colocar paréntesis igual que cualquier llamada a una función, dentro irían los parámetros.
Otras cosas
Hay mucho todavía que conocer de la POO ya que sólo hemos hecho referencia a las cosas más básicas. También existen mecanismos como la herencia y el polimorfismo que son unas de las posibilidades más potentes de la POO.
La herencia: sirve para crear objetos que incorporen propiedades y métodos de otros objetos. Así podremos construir unos objetos a partir de otros sin tener que reescribirlo todo.
El polimorfismo sirve para que no tengamos que preocuparnos sobre lo que estamos trabajando, y abstraernos para definir un código que sea compatible con objetos de varios tipos.
Son conceptos avanzados que cuesta explicar en las líneas de ese informe. No hay que olvidar que existen libros enteros dedicados a la POO y aquí solo pretendemos dar un repaso a algunas cosas para que os suenen cuando tengáis que poneros delante de ellas en los lenguajes de programación que debe conocer un desarrollador del web.
El concepto de programación orientada a objetos (OOP) no es nuevo, lenguajes clásicos como SmallTalk se basan en ella. Dado que la OOP. se basa en la idea natural de la existencia de un mundo lleno de objetos y que la resolución del problema se realiza en términos de objetos, un lenguaje se dice que está basado en objetos si soporta objetos como una característica fundamental del mismo.
El elemento fundamental de la OOP es, como su nombre lo indica, el objeto. Podemos definir un objeto como un conjunto complejo de datos y programas que poseen estructura y forman parte de una organización.
Esta definición especifica varias propiedades importantes de los objetos. En primer lugar, un objeto no es un dato simple, sino que contiene en su interior cierto número de componentes bién estructurados. En segundo lugar, cada objeto no es un ente aislado, sino que forma parte de una organización jerárquica o de otro tipo.
ESTRUCTURA DE UN OBJETO
Un objeto puede considerarse como una especie de cápsula dividida en tres partes:
1 - RELACIONES
2 - PROPIEDADES
3 - METODOS
Cada uno de estos componentes desempeña un papel totalmente independiente:
Las relaciones permiten que el objeto se insterte en la organización y están formadas esencialmente por punteros a otros objetos.
Las propiedades: distinguen un objeto determinado de los restantes que forman parte de la misma organización y tiene valores que dependen de la propiedad de que se trate. Las propiedades de un objeto pueden ser heredadas a sus descendientes en la organización.
Los métodos son las operaciones que pueden realizarse sobre el objeto, que normalmente estarán incorporados en forma de programas (código) que el objeto es capaz de ejecutar y que también pone a disposición de sus descendientes a través de la herencia.
Encapsulamiento y ocultación
Como hemos visto, cada objeto es una estructura compleja en cuyo interior hay datos y programas, todos ellos relacionados entre sí, como si estuvieran encerrados conjuntamente en una cápsula. Esta propiedad (encapsulamiento), es una de las características fundamentales en la OOP.
Los objetos son inaccesibles, e impiden que otros objetos, los usuarios, o incluso los programadores conozcan cómo está distribuída la información o qué información hay disponible. Esta propiedad de los objetos se denomina ocultación de la información.
Esto no quiere decir, sin embargo, que sea imposible conocer lo necesario respecto a un objeto y a lo que contiene. Si así fuera no se podría hacer gran cosa con él. Lo que sucede es que las peticiones de información a un objeto. deben realizarse a través de mensajes dirigidos a él, con la orden de realizar la operación pertinente. La respuesta a estas ordenes será la información requerida, siempre que el objeto considere que quien envía el mensaje está autorizado para obtenerla.
El hecho de que cada objeto sea una cápsula facilita enormemente que un objeto determinado pueda ser transportado a otro punto de la organización, o incluso a otra organización totalmente diferente que precise de él. Si el objeto ha sido bien construído, sus métodos seguirán funcionando en el nuevo entorno sin problemas. Esta cualidad hace que la OOP sea muy apta para la reutilización de programas.
Organización de los objetos
En principio, los objetos forman siempre una organización jerárquica, en el sentido de que ciertos objetos son superiores a otros de cierto modo.
Existen varios tipos tipos de jerarquías: serán simples cuando su estructura pueda ser representada por medio de un "arbol". En otros casos puede ser más compleja.
En cualquier caso, sea la estructura simple o compleja, podrán distinguirse en ella tres niveles de objetos.
-La raíz de la jerarquía. Se trata de un objeto único y especial. Este se caracteríza por estar en el nivel más alto de la estructura y suele recibir un nombre muy genérico, que indica su categoría especial, como por ejemplo objeto madre, Raíz o Entidad.
-Los objetos intermedios. Son aquellos que descienden directamente de la raíz y que a su vez tienen descendientes. Representan conjuntos o clases de objetos, que pueden ser muy generales o muy especializados, según la aplicación. Normalmente reciben nombres genéricos que denotan al conjunto de objetos que representan, por ejemplo, VENTANA, CUENTA, FICHERO. En un conjunto reciben el nombre de clases o tipos si descienden de otra clase o subclase.
-Los objetos terminales. Son todos aquellos que descienden de una clase o subclase y no tienen descendientes. Suelen llamarse casos particulares, instancias o ítems porque representan los elementos del conjunto representado por la clase o subclase a la que pertenecen.
Veamos ahora en detalle los tres elementos mencionados en "Estructura de un Objeto".
1. RELACIONES
Las relaciones entre objetos son, precisamente, los enlaces que permiten a un objeto relacionarse con aquellos que forman parte de la misma organización.
Las hay de dos tipos fundamentales:
-Relaciones jerárquicas. Son esenciales para la existencia misma de la aplicación porque la construyen. Son bidireccionales, es decir, un objeto es padre de otro cuando el primer objeto se encuentra situado inmediatamente encima del segundo en la organización en la que ambos forman parte; asimismo, si un objeto es padre de otro, el segundo es hijo del primero (en la fig. 2, B es padre de D,E y F, es decir, D,E y F son hijos de B; en la fig. 3, los objetos B y C son padres de F, que a su vez es hijo de ambos).
Una organización jerárquica simple puede definirse como aquella en la que un objeto puede tener un solo padre, mientras que en una organizacion jerárquica compleja un hijo puede tener varios padres).
-Relaciones semánticas. Se refieren a las relaciones que no tienen nada que ver con la organización de la que forman parte los objetos que las establecen. Sus propiedades y consecuencia solo dependen de los objetos en sí mismos (de su significado) y no de su posición en la organización.
Se puede ver mejor con un ejemplo: supongamos que vamos a construir un diccionario informatizado que permita al usuario obtener la definición de una palabra cualquiera. Supongamos que, en dicho diccionario, las palabras son objetos y que la organización jerárquica es la que proviene de forma natural de la estructura de nuestros conocimientos sobre el mundo.
La raíz del diccionario podría llamarse TEMAS. De éste término genérico descenderán tres grandes ramas de objetos llamadas VIDA, MUNDO y HOMBRE. El primero (vida) comprenderá las ciencias biológicas: Biología y Medicina. El segundo (mundo), las ciencias de la naturaleza inerte: las Matemáticas, la Física, la Química y la Geología. El tercero (hombre) comprenderá las ciencias humanas: la Geografía, la Historia, etc.
Veamos un ejemplo: estableceremos la relación trabajo entre los objetos NEWTON y OPTICA y la interpretaremos diciendo que significa que Newton trabajó en óptica (véase la fig. 4). La relación es, evidentemente, semántica, pués no establece ninguna connotación jerárquica entre NEWTON y OPTICA y su interpretación depende exclusivamente del significado de ambos objetos.
La existencia de esta relación nos permitirá responder a preguntas como:
¿Quién trabajó en óptica?
¿En qué trabajó Newton?
¿Quien trabajó en Física?
Las dos primeras se deducen inmediatamente de la existencia de la relación trabajo. Para la tercera observamos que si Newton trabajó en óptica automáticamente sabemos que trabajó en Física, por ser óptica una rama de la Física (en nuestro diccionario, el objeto OPTICA es hijo del objeto FISICA). Entonces gracias a la OOP podemos responder a la tercera pregunta sin necesidad de establecer una relación entre NEWTON y FISICA, apoyandonos sólo en la relación definida entre NEWTON y OPTICA y en que OPTICA es hijo de FISICA. De este modo se elimina toda redundancia innecesaria y la cantidad de información que tendremos que definir para todo el diccionario será mínima.
2. PROPIEDADES
Todo objeto puede tener cierto número de propiedades, cada una de las cuales tendrá, a su vez, uno o varios valores. En OOP, las propiedades corresponden a las clásicas "variables" de la programación estructurada. Son, por lo tanto, datos encapsulados dentro del objeto, junto con los métodos (programas) y las relaciones (punteros a otros objetos). Las propiedades de un objeto pueden tener un valor único o pueden contener un conjunto de valores mas o menos estructurados (matrices, vectores, listas, etc.). Además, los valores pueden ser de cualquier tipo (numérico, alfabético, etc.) si el sistema de programación lo permite.
Pero existe una diferencia con las "variables", y es que las propiedades se pueden heredar de unos objetos a otros. En consecuencia, un objeto puede tener una propiedad de maneras diferentes:
-Propiedades propias. Están formadas dentro de la cápsula del objeto.
-Propiedades heredadas. Estan definidas en un objeto diferente, antepasado de éste (padre,"abuelo", etc.). A veces estas propiedades se llaman propiedades miembro porque el objeto las posee por el mero hecho de ser miembro de una clase.
3. METODOS
Una operación que realiza acceso a los datos. Podemos definir método como un programa procedimental o procedural escrito en cualquier lenguaje, que está asociado a un objeto determinado y cuya ejecución sólo puede desencadenarse a través de un mensaje recibido por éste o por sus descendientes.
Son sinónimos de 'método' todos aquellos términos que se han aplicado tradicionalmente a los programas, como procedimiento, función, rutina, etc. Sin embargo, es conveniente utilizar el término 'método' para que se distingan claramente las propiedades especiales que adquiere un programa en el entorno OOP, que afectan fundamentalmente a la forma de invocarlo (únicamente a través de un mensaje) y a su campo de acción, limitado a un objeto y a sus descendientes, aunque posiblemente no a todos.
Si los métodos son programas, se deduce que podrían tener argumentos, o parámetros. Puesto que los métodos pueden heredarse de unos objetos a otros, un objeto puede disponer de un método de dos maneras diferentes:
-Métodos propios. Están incluídos dentro de la cápsula del objeto.
-Métodos heredados. Estan definidos en un objeto diferente, antepasado de éste (padre,"abuelo", etc.). A veces estos métodos se llaman métodos miembro porque el objeto los posee por el mero hecho de ser miembro de una clase.
Polimorfísmo
Una de las características fundamentales de la OOP es el polimorfísmo, que no es otra cosa que la posibilidad de construir varios métodos con el mismo nombre, pero con relación a la clase a la que pertenece cada uno, con comportamientos diferentes. Esto conlleva la habilidad de enviar un mismo mensaje a objetos de clases diferentes. Estos objetos recibirían el mismo mensaje global pero responderían a él de formas diferentes; por ejemplo, un mensaje "+" a un objeto ENTERO significaría suma, mientras que para un objeto STRING significaría concatenación ("pegar" strings uno seguido al otro)
Demonios
Es un tipo especial de métodos, relativamente poco frecuente en los sistemas de OOP, que se activa automáticamente cuando sucede algo especial. Es decir, es un programa, como los métodos ordinarios, pero se diferencia de estos porque su ejecución no se activa con un mensaje, sino que se desencadena autmáticamente cuando ocurre un suceso determinado: la asignación de un valor a una propiedad de un objeto, la lectura de un valor determinado, etc.
Los demonios, cuando existen, se diferencian de otros métodos por que no son heredables y porque a veces están ligados a una de las propiedades de un objeto, mas que al objeto entero.
CONSIDERACIONES FINALES
Beneficios que se obtienen del desarrollo con OOP
Día a día los costos del Hardware decrecen. Así surgen nuevas áreas de aplicación cotidianamente: procesamiento de imágenes y sonido, bases de datos multimediales, automatización de oficinas, ambientes de ingeniería de software, etc. Aún en las aplicaciones tradicionales encontramos que definir interfases hombre-máquina "a-la-Windows" suele ser bastante conveniente.
Lamentablemente, los costos de producción de software siguen aumentando; el mantenimiento y la modificación de sistemas complejos suele ser una tarea trabajosa; cada aplicación, (aunque tenga aspectos similares a otra) suele encararse como un proyecto nuevo, etc.
Todos estos problemas aún no han sido solucionados en forma completa. Pero como los objetos son portables (teóricamente) mientras que la herencia permite la reusabilidad del código orientado a objetos, es más sencillo modificar código existente porque los objetos no interaccionan excepto a través de mensajes; en consecuencia un cambio en la codificación de un objeto no afectará la operación con otro objeto siempre que los métodos respectivos permanezcan intactos. La introducción de tecnología de objetos como una herramienta concepual para analizar, diseñar e implementar aplicaciones permite obtener aplicaciones más modificables, fácilmente extendibles y a partir de componentes reusables. Esta reusabilidad del código disminuye el tiempo que se utiliza en el desarrollo y hace que el desarrollo del software sea mas intuitivo porque la gente piensa naturalmente en términos de objetos más que en términos de algoritmos de software.
Problemas derivados de la utilización de OOP en la actualidad
Un sistema orientado a objetos, por lo visto, puede parecer un paraíso virtual. El problema sin embargo surge en la implementación de tal sistema. Muchas compañías oyen acerca de los beneficios de un sistema orientado a objetos e invierten gran cantidad de recursos luego comienzan a darse cuenta que han impuesto una nueva cultura que es ajena a los programadores actuales. Específicamente los siguientes temas suelen aparecer repetidamente:
Curvas de aprendizaje largas. Un sistema orientado a objetos ve al mundo en una forma única. Involucra la conceptualización de todos los elementos de un programa, desde subsistemas a los datos, en la forma de objetos. Toda la comunicación entre los objetos debe realizarse en la forma de mensajes. Esta no es la forma en que están escritos los programas orientados a objetos actualmente; al hacer la transición a un sistema orientado a objetos la mayoría de los programadores deben capacitarse nuevamente antes de poder usarlo.
Dependencia del lenguaje. A pesar de la portabilidad conceptual de los objetos en un sistema orientado a objetos, en la práctica existen muchas dependencias. Muchos lenguajes orientados a objetos están compitiendo actualmente para dominar el mercado. Cambiar el lenguaje de implementación de un sistema orientado a objetos no es una tarea sencilla; por ejemplo C++ soporta el concepto de herencia multiple mientras que SmallTalk no lo soporta; en consecuencia la elección de un lenguaje tiene ramificaciones de diseño muy importamtes.
Determinacion de las clases. Una clase es un molde que se utiliza para crear nuevos objetos. En consecuencia es importante crear el conjunto de clases adecuado para un proyecto. Desafortunadamente la definición de las clases es más un arte que una ciencia. Si bien hay muchas jerarquías de clase predefinidas usualmente se deben crear clases específicas para la aplicación que se este desarrollando. Luego, en 6 meses ó 1 año se da cuenta que las clases que se establecieron no son posibles; en ese caso será necesario reestructurar la jerarquía de clases devastando totalmente la planificación original.
Performance. En un sistema donde todo es un objeto y toda interaccion es a través de mensajes, el tráfico de mensajes afecta la performance. A medida que la tecnología avanza y la velocidad de microprocesamiento, potencia y tamaño de la memoria aumentan, la situacion mejorará; pero en la situación actual, un diseño de una aplicación orientada a objetos que no tiene en cuenta la performance no será viable comercialmente.
En la programación orientada a objetos, la herencia es un mecanismo que permite derivar una clase de otra, de manera que extienda su funcionalidad. En programación orientada a objetos el polimorfismo: se refiere a la posibilidad de definir clases diferentes que tienen métodos o atributos denominados de forma idéntica, pero que se comportan de manera distinta.
Por ejemplo, podemos crear dos clases distintas: Pez y Ave que heredan de la superclase Animal. La clase Animal tiene el método abstracto mover que se implementa de forma distinta en cada una de las subclases (peces y aves se mueven de forma distinta).
Como se mencionó anteriormente, el concepto de polimorfismo se puede aplicar tanto a funciones como a tipos de datos. Así nacen los conceptos de funciones polimórficas y tipos polimórficos. Las primeras son aquellas funciones que pueden evaluarse o ser aplicadas a diferentes tipos de datos de forma indistinta; los tipos polimórficos, por su parte, son aquellos tipos de datos que contienen al menos un elemento cuyo tipo no está especificado.
Clasificación [editar]Se puede clasificar el polimorfismo en dos grandes clases:
Polimorfismo dinámico (o polimorfismo paramétrico) es aquél en el que el código no incluye ningún tipo de especificación sobre el tipo de datos sobre el que se trabaja. Así, puede ser utilizado a todo tipo de datos compatible. Polimorfismo estático (o polimorfismo ad hoc) es aquél en el que los tipos a los que se aplica el polimorfismo deben ser explicitados y declarados uno por uno antes de poder ser utilizados. El polimorfismo dinámico unido a la herencia es lo que en ocasiones se conoce como programación genérica.
También se clasifica en herencia por redefinición de métodos abstractos y por método sobrecargado. El segundo hace referencia al mismo método con diferentes parámetros.
Otra clasificación agrupa los polimorfismo en dos tipos: Ad-Hoc que incluye a su vez sobrecarga de operadores y coerción, Universal (inclusión o controlado por la herencia, paramétrico o genericidad).
Ejemplo de polimorfismo [editar]En este ejemplo haremos uso del lenguaje C++ para mostrar el polimorfismo. También se hará uso de las funciones virtuales puras de este lenguaje, aunque para que el polimorfismo funcione no es necesario que las funciones sean virtuales puras, es decir, perfectamente el código de la clase "superior" (en nuestro caso Empleado) podría tener código
class Empleado {protected: static const unsigned int SUELDO_BASE = 700; // Supuesto sueldo base para todos public: /* OTROS MÉTODOS */ virtual unsigned int sueldo() = 0;}; class Director : public Empleado {public: /* OTROS MÉTODOS */ unsigned int sueldo() { return SUELDO_BASE*100; }}; class Ventas : public Empleado {private: unsigned int ventas_realizadas; // Contador de ventas realizadas por el vendedor public: /* OTROS MÉTODOS */ unsigned int sueldo() { return SUELDO_BASE + ventas_realizadas*60; }}; class Mantenimiento : public Empleado {public: /* OTROS MÉTODOS */ unsigned int sueldo() { return SUELDO_BASE + 300; }}; class Becario : public Empleado {private: bool jornada_completa; // Indica si el becario trabaja a jornada completa public: /* OTROS MÉTODOS */ unsigned int sueldo() { if (jornada_completa) return SUELDO_BASE/2; else return SUELDO_BASE/4; }}; /* AHORA HAREMOS USO DE LAS CLASES */int main() { Empleado* e[4]; // Punteros a Empleado Director d; Ventas v; // Estas dos las declararemos como objetos normales en la pila e[0] = &d; // Asignamos a un puntero a Empleado la dirección de un objeto del tipo Director e[1] = &v; // Lo mismo con Ventas e[2] = new Mantenimiento(); e[3] = new Becario(); unsigned int sueldo = 0; for (int i = 0; i <>sueldo(); cout << "Este mes vamos a gastar " << sueldo << " dinero en sueldos" << endl;}
MétodoDe Wikipedia, la enciclopedia libreSaltar a navegación, búsquedaDel griego metha (más allá) y odos (camino), significa literalmente camino o vía para llegar más lejos; hace referencia al medio para llegar a un fin. En su significado original esta palabra nos indica que el camino conduce a un lugar.
Un método es una serie de pasos sucesivos, conducen a una meta. El objetivo del profesionista es llegar a tomar las decisiones y una teoría que permita generalizar y resolver de la misma forma problemas semejantes en el futuro. Por ende es necesario que siga el método más apropiado a su problema, lo que equivale a decir que debe seguir el camino que lo conduzca a su objetivo.
Algunos métodos son comunes a muchas ciencias, pero cada ciencia tiene sus propios problemas y por ende sus propias necesidades en donde será preciso emplear aquellas modalidades de los métodos generales más adecuados a la solución de los problemas específicos.
El método es un orden que debe imponer a los diferentes procesos necesarios apara lograr un fin dado o resultados. En la ciencia se entiende por método, conjunto de procesos que el hombre debe emprender en la investigación y demostración de la verdad.
El método no se inventa depende del objeto de la investigación. Los sabios cuyas investigaciones fueron coronadas con éxito tuvieron el cuidado de denotar los pasos recorridos y los medios que llevaron a los resultados. Otro después de ellos analizaron tales procesos y justificaron la eficacia de ellos mismos.
es una forma especial de programar, más cercana a como expresaríamos las cosas en la vida real que otros tipos de programación. Con la POO tenemos que aprender a pensar las cosas de una manera distinta, para escribir nuestros programas en términos de objetos, propiedades, métodos y otras cosas que veremos rápidamente para aclarar conceptos y dar una pequeña base que permita soltarnos un poco con este tipo de programación.
Motivación
Durante años, los programadores se han dedicado a construir aplicaciones muy parecidas que resolvían una y otra vez los mismos problemas. Para conseguir que los esfuerzos de los programadores puedan ser utilizados por otras personas se creó la POO. Que es una serie de normas de realizar las cosas de manera que otras personas puedan utilizarlas y adelantar su trabajo, de manera que consigamos que el código se pueda reutilizar.
La POO no es difícil, pero es una manera especial de pensar, a veces subjetiva de quien la programa, de manera que la forma de hacer las cosas puede ser diferente según el programador. Aunque podamos hacer los programas de formas distintas, no todas ellas son correctas, lo difícil no es programar orientado a objetos sino programar bien. Programar bien es importante porque así nos podemos aprovechar de todas las ventajas de la POO.
Cómo se piensa en objetos
Pensar en términos de objetos es muy parecido a cómo lo haríamos en la vida real. Por ejemplo vamos a pensar en un coche para tratar de modelizarlo en un esquema de POO. Diríamos que el coche es el elemento principal que tiene una serie de características, como podrían ser el color, el modelo o la marca. Además tiene una serie de funcionalidades asociadas, como pueden ser ponerse en marcha, parar o aparcar.
Pues en un esquema POO el coche sería el objeto, las propiedades serían las características como el color o el modelo y los métodos serían las funcionalidades asociadas como ponerse en marcha o parar.
Por poner otro ejemplo vamos a ver cómo modelizaríamos en un esquema POO una fracción, es decir, esa estructura matemática que tiene un numerador y un denominador que divide al numerador, por ejemplo 3/2.
La fracción será el objeto y tendrá dos propiedades, el numerador y el denominador. Luego podría tener varios métodos como simplificarse, sumarse con otra fracción o número, restarse con otra fracción, etc.
Estos objetos se podrán utilizar en los programas, por ejemplo en un programa de matemáticas harás uso de objetos fracción y en un programa que gestione un taller de coches utilizarás objetos coche. Los programas Orientados a objetos utilizan muchos objetos para realizar las acciones que se desean realizar y ellos mismos también son objetos. Es decir, el taller de coches será un objeto que utilizará objetos coche, herramienta, mecánico, recambios, etc.
Clases en POO
Las clases :son declaraciones de objetos, también se podrían definir como abstracciones de objetos. Esto quiere decir que la definición de un objeto es la clase. Cuando programamos un objeto y definimos sus características y funcionalidades en realidad lo que estamos haciendo es programar una clase. En los ejemplos anteriores en realidad hablábamos de las clases coche o fracción porque sólo estuvimos definiendo, aunque por encima, sus formas.
Propiedades en clases
Las propiedades o atributos: son las características de los objetos. Cuando definimos una propiedad normalmente especificamos su nombre y su tipo. Nos podemos hacer a la idea de que las propiedades son algo así como variables donde almacenamos datos relacionados con los objetos.
Métodos en las clases :
Son las funcionalidades asociadas a los objetos. Cuando estamos programando las clases las llamamos métodos. Los métodos son como funciones que están asociadas a un objeto.
Objetos en POO
Los objetos son ejemplares de una clase cualquiera. Cuando creamos un ejemplar tenemos que especificar la clase a partir de la cual se creará. Esta acción de crear un objeto a partir de una clase se llama instanciar (que viene de una mala traducción de la palabra instace que en inglés significa ejemplar). Por ejemplo, un objeto de la clase fracción es por ejemplo 3/5. El concepto o definición de fracción sería la clase, pero cuando ya estamos hablando de una fracción en concreto 4/7, 8/1000 o cualquier otra, la llamamos objeto.
Para crear un objeto se tiene que escribir una instrucción especial que puede ser distinta dependiendo el lenguaje de programación que se emplee, pero será algo parecido a esto.
miCoche = new Coche() programacion orientada a objetos (p.o.o)Con la palabra new especificamos que se tiene que crear una instancia de la clase que sigue a continuación. Dentro de los paréntesis podríamos colocar parámetros con los que inicializar el objeto de la clase coche.
Estados en objetos
Cuando tenemos un objeto sus propiedades toman valores. Por ejemplo, cuando tenemos un coche la propiedad color tomará un valor en concreto, como por ejemplo rojo o gris metalizado. El valor concreto de una propiedad de un objeto se llama estado.
Para acceder a un estado de un objeto para ver su valor o cambiarlo se utiliza el operador punto.
miCoche.color = rojo
El objeto es miCoche, luego colocamos el operador punto y por último el nombre e la propiedad a la que deseamos acceder. En este ejemplo estamos cambiando el valor del estado de la propiedad del objeto a rojo con una simple asignación.
Mensajes en objetos
Un mensaje en un objeto es la acción de efectuar una llamada a un método. Por ejemplo, cuando le decimos a un objeto coche que se ponga en marcha estamos pasándole el mensaje “ponte en marcha”.
Para mandar mensajes a los objetos utilizamos el operador punto, seguido del método que deseamos invocar.
miCoche.ponerseEnMarcha()
En este ejemplo pasamos el mensaje ponerseEnMarcha(). Hay que colocar paréntesis igual que cualquier llamada a una función, dentro irían los parámetros.
Otras cosas
Hay mucho todavía que conocer de la POO ya que sólo hemos hecho referencia a las cosas más básicas. También existen mecanismos como la herencia y el polimorfismo que son unas de las posibilidades más potentes de la POO.
La herencia: sirve para crear objetos que incorporen propiedades y métodos de otros objetos. Así podremos construir unos objetos a partir de otros sin tener que reescribirlo todo.
El polimorfismo sirve para que no tengamos que preocuparnos sobre lo que estamos trabajando, y abstraernos para definir un código que sea compatible con objetos de varios tipos.
Son conceptos avanzados que cuesta explicar en las líneas de ese informe. No hay que olvidar que existen libros enteros dedicados a la POO y aquí solo pretendemos dar un repaso a algunas cosas para que os suenen cuando tengáis que poneros delante de ellas en los lenguajes de programación que debe conocer un desarrollador del web.
El concepto de programación orientada a objetos (OOP) no es nuevo, lenguajes clásicos como SmallTalk se basan en ella. Dado que la OOP. se basa en la idea natural de la existencia de un mundo lleno de objetos y que la resolución del problema se realiza en términos de objetos, un lenguaje se dice que está basado en objetos si soporta objetos como una característica fundamental del mismo.
El elemento fundamental de la OOP es, como su nombre lo indica, el objeto. Podemos definir un objeto como un conjunto complejo de datos y programas que poseen estructura y forman parte de una organización.
Esta definición especifica varias propiedades importantes de los objetos. En primer lugar, un objeto no es un dato simple, sino que contiene en su interior cierto número de componentes bién estructurados. En segundo lugar, cada objeto no es un ente aislado, sino que forma parte de una organización jerárquica o de otro tipo.
ESTRUCTURA DE UN OBJETO
Un objeto puede considerarse como una especie de cápsula dividida en tres partes:
1 - RELACIONES
2 - PROPIEDADES
3 - METODOS
Cada uno de estos componentes desempeña un papel totalmente independiente:
Las relaciones permiten que el objeto se insterte en la organización y están formadas esencialmente por punteros a otros objetos.
Las propiedades: distinguen un objeto determinado de los restantes que forman parte de la misma organización y tiene valores que dependen de la propiedad de que se trate. Las propiedades de un objeto pueden ser heredadas a sus descendientes en la organización.
Los métodos son las operaciones que pueden realizarse sobre el objeto, que normalmente estarán incorporados en forma de programas (código) que el objeto es capaz de ejecutar y que también pone a disposición de sus descendientes a través de la herencia.
Encapsulamiento y ocultación
Como hemos visto, cada objeto es una estructura compleja en cuyo interior hay datos y programas, todos ellos relacionados entre sí, como si estuvieran encerrados conjuntamente en una cápsula. Esta propiedad (encapsulamiento), es una de las características fundamentales en la OOP.
Los objetos son inaccesibles, e impiden que otros objetos, los usuarios, o incluso los programadores conozcan cómo está distribuída la información o qué información hay disponible. Esta propiedad de los objetos se denomina ocultación de la información.
Esto no quiere decir, sin embargo, que sea imposible conocer lo necesario respecto a un objeto y a lo que contiene. Si así fuera no se podría hacer gran cosa con él. Lo que sucede es que las peticiones de información a un objeto. deben realizarse a través de mensajes dirigidos a él, con la orden de realizar la operación pertinente. La respuesta a estas ordenes será la información requerida, siempre que el objeto considere que quien envía el mensaje está autorizado para obtenerla.
El hecho de que cada objeto sea una cápsula facilita enormemente que un objeto determinado pueda ser transportado a otro punto de la organización, o incluso a otra organización totalmente diferente que precise de él. Si el objeto ha sido bien construído, sus métodos seguirán funcionando en el nuevo entorno sin problemas. Esta cualidad hace que la OOP sea muy apta para la reutilización de programas.
Organización de los objetos
En principio, los objetos forman siempre una organización jerárquica, en el sentido de que ciertos objetos son superiores a otros de cierto modo.
Existen varios tipos tipos de jerarquías: serán simples cuando su estructura pueda ser representada por medio de un "arbol". En otros casos puede ser más compleja.
En cualquier caso, sea la estructura simple o compleja, podrán distinguirse en ella tres niveles de objetos.
-La raíz de la jerarquía. Se trata de un objeto único y especial. Este se caracteríza por estar en el nivel más alto de la estructura y suele recibir un nombre muy genérico, que indica su categoría especial, como por ejemplo objeto madre, Raíz o Entidad.
-Los objetos intermedios. Son aquellos que descienden directamente de la raíz y que a su vez tienen descendientes. Representan conjuntos o clases de objetos, que pueden ser muy generales o muy especializados, según la aplicación. Normalmente reciben nombres genéricos que denotan al conjunto de objetos que representan, por ejemplo, VENTANA, CUENTA, FICHERO. En un conjunto reciben el nombre de clases o tipos si descienden de otra clase o subclase.
-Los objetos terminales. Son todos aquellos que descienden de una clase o subclase y no tienen descendientes. Suelen llamarse casos particulares, instancias o ítems porque representan los elementos del conjunto representado por la clase o subclase a la que pertenecen.
Veamos ahora en detalle los tres elementos mencionados en "Estructura de un Objeto".
1. RELACIONES
Las relaciones entre objetos son, precisamente, los enlaces que permiten a un objeto relacionarse con aquellos que forman parte de la misma organización.
Las hay de dos tipos fundamentales:
-Relaciones jerárquicas. Son esenciales para la existencia misma de la aplicación porque la construyen. Son bidireccionales, es decir, un objeto es padre de otro cuando el primer objeto se encuentra situado inmediatamente encima del segundo en la organización en la que ambos forman parte; asimismo, si un objeto es padre de otro, el segundo es hijo del primero (en la fig. 2, B es padre de D,E y F, es decir, D,E y F son hijos de B; en la fig. 3, los objetos B y C son padres de F, que a su vez es hijo de ambos).
Una organización jerárquica simple puede definirse como aquella en la que un objeto puede tener un solo padre, mientras que en una organizacion jerárquica compleja un hijo puede tener varios padres).
-Relaciones semánticas. Se refieren a las relaciones que no tienen nada que ver con la organización de la que forman parte los objetos que las establecen. Sus propiedades y consecuencia solo dependen de los objetos en sí mismos (de su significado) y no de su posición en la organización.
Se puede ver mejor con un ejemplo: supongamos que vamos a construir un diccionario informatizado que permita al usuario obtener la definición de una palabra cualquiera. Supongamos que, en dicho diccionario, las palabras son objetos y que la organización jerárquica es la que proviene de forma natural de la estructura de nuestros conocimientos sobre el mundo.
La raíz del diccionario podría llamarse TEMAS. De éste término genérico descenderán tres grandes ramas de objetos llamadas VIDA, MUNDO y HOMBRE. El primero (vida) comprenderá las ciencias biológicas: Biología y Medicina. El segundo (mundo), las ciencias de la naturaleza inerte: las Matemáticas, la Física, la Química y la Geología. El tercero (hombre) comprenderá las ciencias humanas: la Geografía, la Historia, etc.
Veamos un ejemplo: estableceremos la relación trabajo entre los objetos NEWTON y OPTICA y la interpretaremos diciendo que significa que Newton trabajó en óptica (véase la fig. 4). La relación es, evidentemente, semántica, pués no establece ninguna connotación jerárquica entre NEWTON y OPTICA y su interpretación depende exclusivamente del significado de ambos objetos.
La existencia de esta relación nos permitirá responder a preguntas como:
¿Quién trabajó en óptica?
¿En qué trabajó Newton?
¿Quien trabajó en Física?
Las dos primeras se deducen inmediatamente de la existencia de la relación trabajo. Para la tercera observamos que si Newton trabajó en óptica automáticamente sabemos que trabajó en Física, por ser óptica una rama de la Física (en nuestro diccionario, el objeto OPTICA es hijo del objeto FISICA). Entonces gracias a la OOP podemos responder a la tercera pregunta sin necesidad de establecer una relación entre NEWTON y FISICA, apoyandonos sólo en la relación definida entre NEWTON y OPTICA y en que OPTICA es hijo de FISICA. De este modo se elimina toda redundancia innecesaria y la cantidad de información que tendremos que definir para todo el diccionario será mínima.
2. PROPIEDADES
Todo objeto puede tener cierto número de propiedades, cada una de las cuales tendrá, a su vez, uno o varios valores. En OOP, las propiedades corresponden a las clásicas "variables" de la programación estructurada. Son, por lo tanto, datos encapsulados dentro del objeto, junto con los métodos (programas) y las relaciones (punteros a otros objetos). Las propiedades de un objeto pueden tener un valor único o pueden contener un conjunto de valores mas o menos estructurados (matrices, vectores, listas, etc.). Además, los valores pueden ser de cualquier tipo (numérico, alfabético, etc.) si el sistema de programación lo permite.
Pero existe una diferencia con las "variables", y es que las propiedades se pueden heredar de unos objetos a otros. En consecuencia, un objeto puede tener una propiedad de maneras diferentes:
-Propiedades propias. Están formadas dentro de la cápsula del objeto.
-Propiedades heredadas. Estan definidas en un objeto diferente, antepasado de éste (padre,"abuelo", etc.). A veces estas propiedades se llaman propiedades miembro porque el objeto las posee por el mero hecho de ser miembro de una clase.
3. METODOS
Una operación que realiza acceso a los datos. Podemos definir método como un programa procedimental o procedural escrito en cualquier lenguaje, que está asociado a un objeto determinado y cuya ejecución sólo puede desencadenarse a través de un mensaje recibido por éste o por sus descendientes.
Son sinónimos de 'método' todos aquellos términos que se han aplicado tradicionalmente a los programas, como procedimiento, función, rutina, etc. Sin embargo, es conveniente utilizar el término 'método' para que se distingan claramente las propiedades especiales que adquiere un programa en el entorno OOP, que afectan fundamentalmente a la forma de invocarlo (únicamente a través de un mensaje) y a su campo de acción, limitado a un objeto y a sus descendientes, aunque posiblemente no a todos.
Si los métodos son programas, se deduce que podrían tener argumentos, o parámetros. Puesto que los métodos pueden heredarse de unos objetos a otros, un objeto puede disponer de un método de dos maneras diferentes:
-Métodos propios. Están incluídos dentro de la cápsula del objeto.
-Métodos heredados. Estan definidos en un objeto diferente, antepasado de éste (padre,"abuelo", etc.). A veces estos métodos se llaman métodos miembro porque el objeto los posee por el mero hecho de ser miembro de una clase.
Polimorfísmo
Una de las características fundamentales de la OOP es el polimorfísmo, que no es otra cosa que la posibilidad de construir varios métodos con el mismo nombre, pero con relación a la clase a la que pertenece cada uno, con comportamientos diferentes. Esto conlleva la habilidad de enviar un mismo mensaje a objetos de clases diferentes. Estos objetos recibirían el mismo mensaje global pero responderían a él de formas diferentes; por ejemplo, un mensaje "+" a un objeto ENTERO significaría suma, mientras que para un objeto STRING significaría concatenación ("pegar" strings uno seguido al otro)
Demonios
Es un tipo especial de métodos, relativamente poco frecuente en los sistemas de OOP, que se activa automáticamente cuando sucede algo especial. Es decir, es un programa, como los métodos ordinarios, pero se diferencia de estos porque su ejecución no se activa con un mensaje, sino que se desencadena autmáticamente cuando ocurre un suceso determinado: la asignación de un valor a una propiedad de un objeto, la lectura de un valor determinado, etc.
Los demonios, cuando existen, se diferencian de otros métodos por que no son heredables y porque a veces están ligados a una de las propiedades de un objeto, mas que al objeto entero.
CONSIDERACIONES FINALES
Beneficios que se obtienen del desarrollo con OOP
Día a día los costos del Hardware decrecen. Así surgen nuevas áreas de aplicación cotidianamente: procesamiento de imágenes y sonido, bases de datos multimediales, automatización de oficinas, ambientes de ingeniería de software, etc. Aún en las aplicaciones tradicionales encontramos que definir interfases hombre-máquina "a-la-Windows" suele ser bastante conveniente.
Lamentablemente, los costos de producción de software siguen aumentando; el mantenimiento y la modificación de sistemas complejos suele ser una tarea trabajosa; cada aplicación, (aunque tenga aspectos similares a otra) suele encararse como un proyecto nuevo, etc.
Todos estos problemas aún no han sido solucionados en forma completa. Pero como los objetos son portables (teóricamente) mientras que la herencia permite la reusabilidad del código orientado a objetos, es más sencillo modificar código existente porque los objetos no interaccionan excepto a través de mensajes; en consecuencia un cambio en la codificación de un objeto no afectará la operación con otro objeto siempre que los métodos respectivos permanezcan intactos. La introducción de tecnología de objetos como una herramienta concepual para analizar, diseñar e implementar aplicaciones permite obtener aplicaciones más modificables, fácilmente extendibles y a partir de componentes reusables. Esta reusabilidad del código disminuye el tiempo que se utiliza en el desarrollo y hace que el desarrollo del software sea mas intuitivo porque la gente piensa naturalmente en términos de objetos más que en términos de algoritmos de software.
Problemas derivados de la utilización de OOP en la actualidad
Un sistema orientado a objetos, por lo visto, puede parecer un paraíso virtual. El problema sin embargo surge en la implementación de tal sistema. Muchas compañías oyen acerca de los beneficios de un sistema orientado a objetos e invierten gran cantidad de recursos luego comienzan a darse cuenta que han impuesto una nueva cultura que es ajena a los programadores actuales. Específicamente los siguientes temas suelen aparecer repetidamente:
Curvas de aprendizaje largas. Un sistema orientado a objetos ve al mundo en una forma única. Involucra la conceptualización de todos los elementos de un programa, desde subsistemas a los datos, en la forma de objetos. Toda la comunicación entre los objetos debe realizarse en la forma de mensajes. Esta no es la forma en que están escritos los programas orientados a objetos actualmente; al hacer la transición a un sistema orientado a objetos la mayoría de los programadores deben capacitarse nuevamente antes de poder usarlo.
Dependencia del lenguaje. A pesar de la portabilidad conceptual de los objetos en un sistema orientado a objetos, en la práctica existen muchas dependencias. Muchos lenguajes orientados a objetos están compitiendo actualmente para dominar el mercado. Cambiar el lenguaje de implementación de un sistema orientado a objetos no es una tarea sencilla; por ejemplo C++ soporta el concepto de herencia multiple mientras que SmallTalk no lo soporta; en consecuencia la elección de un lenguaje tiene ramificaciones de diseño muy importamtes.
Determinacion de las clases. Una clase es un molde que se utiliza para crear nuevos objetos. En consecuencia es importante crear el conjunto de clases adecuado para un proyecto. Desafortunadamente la definición de las clases es más un arte que una ciencia. Si bien hay muchas jerarquías de clase predefinidas usualmente se deben crear clases específicas para la aplicación que se este desarrollando. Luego, en 6 meses ó 1 año se da cuenta que las clases que se establecieron no son posibles; en ese caso será necesario reestructurar la jerarquía de clases devastando totalmente la planificación original.
Performance. En un sistema donde todo es un objeto y toda interaccion es a través de mensajes, el tráfico de mensajes afecta la performance. A medida que la tecnología avanza y la velocidad de microprocesamiento, potencia y tamaño de la memoria aumentan, la situacion mejorará; pero en la situación actual, un diseño de una aplicación orientada a objetos que no tiene en cuenta la performance no será viable comercialmente.
En la programación orientada a objetos, la herencia es un mecanismo que permite derivar una clase de otra, de manera que extienda su funcionalidad. En programación orientada a objetos el polimorfismo: se refiere a la posibilidad de definir clases diferentes que tienen métodos o atributos denominados de forma idéntica, pero que se comportan de manera distinta.
Por ejemplo, podemos crear dos clases distintas: Pez y Ave que heredan de la superclase Animal. La clase Animal tiene el método abstracto mover que se implementa de forma distinta en cada una de las subclases (peces y aves se mueven de forma distinta).
Como se mencionó anteriormente, el concepto de polimorfismo se puede aplicar tanto a funciones como a tipos de datos. Así nacen los conceptos de funciones polimórficas y tipos polimórficos. Las primeras son aquellas funciones que pueden evaluarse o ser aplicadas a diferentes tipos de datos de forma indistinta; los tipos polimórficos, por su parte, son aquellos tipos de datos que contienen al menos un elemento cuyo tipo no está especificado.
Clasificación [editar]Se puede clasificar el polimorfismo en dos grandes clases:
Polimorfismo dinámico (o polimorfismo paramétrico) es aquél en el que el código no incluye ningún tipo de especificación sobre el tipo de datos sobre el que se trabaja. Así, puede ser utilizado a todo tipo de datos compatible. Polimorfismo estático (o polimorfismo ad hoc) es aquél en el que los tipos a los que se aplica el polimorfismo deben ser explicitados y declarados uno por uno antes de poder ser utilizados. El polimorfismo dinámico unido a la herencia es lo que en ocasiones se conoce como programación genérica.
También se clasifica en herencia por redefinición de métodos abstractos y por método sobrecargado. El segundo hace referencia al mismo método con diferentes parámetros.
Otra clasificación agrupa los polimorfismo en dos tipos: Ad-Hoc que incluye a su vez sobrecarga de operadores y coerción, Universal (inclusión o controlado por la herencia, paramétrico o genericidad).
Ejemplo de polimorfismo [editar]En este ejemplo haremos uso del lenguaje C++ para mostrar el polimorfismo. También se hará uso de las funciones virtuales puras de este lenguaje, aunque para que el polimorfismo funcione no es necesario que las funciones sean virtuales puras, es decir, perfectamente el código de la clase "superior" (en nuestro caso Empleado) podría tener código
class Empleado {protected: static const unsigned int SUELDO_BASE = 700; // Supuesto sueldo base para todos public: /* OTROS MÉTODOS */ virtual unsigned int sueldo() = 0;}; class Director : public Empleado {public: /* OTROS MÉTODOS */ unsigned int sueldo() { return SUELDO_BASE*100; }}; class Ventas : public Empleado {private: unsigned int ventas_realizadas; // Contador de ventas realizadas por el vendedor public: /* OTROS MÉTODOS */ unsigned int sueldo() { return SUELDO_BASE + ventas_realizadas*60; }}; class Mantenimiento : public Empleado {public: /* OTROS MÉTODOS */ unsigned int sueldo() { return SUELDO_BASE + 300; }}; class Becario : public Empleado {private: bool jornada_completa; // Indica si el becario trabaja a jornada completa public: /* OTROS MÉTODOS */ unsigned int sueldo() { if (jornada_completa) return SUELDO_BASE/2; else return SUELDO_BASE/4; }}; /* AHORA HAREMOS USO DE LAS CLASES */int main() { Empleado* e[4]; // Punteros a Empleado Director d; Ventas v; // Estas dos las declararemos como objetos normales en la pila e[0] = &d; // Asignamos a un puntero a Empleado la dirección de un objeto del tipo Director e[1] = &v; // Lo mismo con Ventas e[2] = new Mantenimiento(); e[3] = new Becario(); unsigned int sueldo = 0; for (int i = 0; i <>sueldo(); cout << "Este mes vamos a gastar " << sueldo << " dinero en sueldos" << endl;}
MétodoDe Wikipedia, la enciclopedia libreSaltar a navegación, búsquedaDel griego metha (más allá) y odos (camino), significa literalmente camino o vía para llegar más lejos; hace referencia al medio para llegar a un fin. En su significado original esta palabra nos indica que el camino conduce a un lugar.
Un método es una serie de pasos sucesivos, conducen a una meta. El objetivo del profesionista es llegar a tomar las decisiones y una teoría que permita generalizar y resolver de la misma forma problemas semejantes en el futuro. Por ende es necesario que siga el método más apropiado a su problema, lo que equivale a decir que debe seguir el camino que lo conduzca a su objetivo.
Algunos métodos son comunes a muchas ciencias, pero cada ciencia tiene sus propios problemas y por ende sus propias necesidades en donde será preciso emplear aquellas modalidades de los métodos generales más adecuados a la solución de los problemas específicos.
El método es un orden que debe imponer a los diferentes procesos necesarios apara lograr un fin dado o resultados. En la ciencia se entiende por método, conjunto de procesos que el hombre debe emprender en la investigación y demostración de la verdad.
El método no se inventa depende del objeto de la investigación. Los sabios cuyas investigaciones fueron coronadas con éxito tuvieron el cuidado de denotar los pasos recorridos y los medios que llevaron a los resultados. Otro después de ellos analizaron tales procesos y justificaron la eficacia de ellos mismos.
Suscribirse a:
Entradas (Atom)